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A semi-primary hereditary ring E, with radical M and residue ring F = ~./M, 
is uniquely determined by F and a F-bimodule A = M/M 2, whenever ~ admits 
a splitting ~ = F + A + M 2. 

The purpose of this paper is twofold. We first generalize the main theorem 
of Jans and Nakayama [3] concerning a semi primary ring that admits a splitting, 
A = F + A + N 2, and such that gl.dim A/N 2 < o0. It turns out that the splitting 
assumption is superfluous. Next we discuss the extent to which ~ is unique, 
where ~ is a semi primary hereditary ring of which A is a residue. 

We say that A is a semi primary ring, if  its (Jacobson) radical N is nilpotent, 
and the residue ring F, F = A/N, is a semi simple (Artinian) ring. 

If  eo, "", ek are k +  1 idempotents in A, then we say that the sequence (eo, ".., ek) 
is a connected sequence of length k if e~Nei+l ~ 0 for all i, i = o, . . . ,(k - 1). 

We denote by I(A) the supremum of the length of connected sequences, in A. 
If  I is any two-sided ideal in A such that I c N 2 then l(A/1) = I(A). Jans and 
Nakayama have shown in [3] that gl.dimA/N 2 = I(A). If, furthermore, A admits 
a splitting, A = F + A + N z, then gl.dimA/l < gl.dimA/N 2, and A is a residue 
ring of a semi-primary hereditary ring l) (i.e. gl.dim f2 < 1). 

I f / (A) < o0, Chase has shown in [1] that A is triangular, i.e. one can arrange 
every complete set (el, .. ', et) of mutually orthogonal idempotents in A, 
A = A e l  @ ... OAet, so that eiNej= 0 whenever i < j .  

Denote by n(A) the integer satisfying Nn(A)=0 and Nn(A)-I~0.  Then 
n(A) - 1 < I(A) whenever gl.dimA/N 2 < ~ (e.g. [1], [3]). 

If  A is any (two-sided) F-bimodule, then one constructs the ring f~(F,A) 
= F + A + A ® r A + A ® r A ® r A + ' " ,  this turned out to be very useful 
in studying semi-primary rings all of whose residue rings have finite global di- 
mension. 

Unless otherwise specified let A denote a semi primary ring with radical N, 
such that gl.dimA/N 2 < o0. Hence A is triangular [1]. An immediate consequence 
is the existence of a simple projective module. Furthermore, since elNej = 0 for 
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j = 1, ..., t, it follows by straightforward computation that Ael/Nex is a simple 
injective module. 

TrmOREM 1. gl.dimA/I < gl.dimA/N 2 for every two sided ideal, I, such 
that I c N 2. 

Proof. A admits a splitting, A = F + N, and A is a residue of the semi primary 
hereditary ring f~ = t~(F, N). If  K is an ideal in fi we denote by K(° the  tth power 
of K in fL We have N (t(A)+ ~) = 0. Let J be the inverse image o f / i n  fl under the 
canonical projection of f~-onto A, then D/J is isomorphic to Aft. 

It now follows from [3, Prop. 9] that gl.dimA/I < I(A). Since gl.dimA]N 2 = I(A) 
we finally obtain the inequality gl.dimA/I < gl.dimA/N 2. 

For the rest let A be a semi primary ring with radical N of square zero, such 
that gl.dimA = n. Then if f~ = f~(F,N) it follows that N(")~ 0 and N (n+l) = 0. 

If  Z is any semi primary hereditary ring with radical M, and ElM 2 is isomorphic 
to A then n = l ( A ) = l ( Z ) , M n ~ O ,  and M " + I = 0 .  This follows from the 
following lemma: 

L~MMA 2. I f  Z is a semi primary hereditary ring, then n(Z) = l(Z) + 1. 

COROLLARY 3. Let ZI(Y,2) be a semi-primary hereditary ring with radical 
NI(N2). I f  Z1/N ~ is isomorphic to Y.2/N~ then I(Z1) = l(•2) and n(Z1) = n(X2). 

If  0 and 1 are the unique central idempotents in ZI(Z2), then the center of 
Zl(~2) is a field, say FI(F2) (e.g., [4]). The center of Z1/N 2 is a field, say F, and 
up to an isomorphism F~ and F2 are subfields of  F. Furthermore, the semi primary 
hereditary ring f2(Zt/N 1, N1) has F as its center. The following example shows 
that it is possible that F~ is a proper subfield of F. 

EXAMPLE. Let x be a transcendental element over a field k of characteristic 2. 
Set R --- k(x 1/2) (~k(x)k(xU2). Let E, be the subring of the 3 x 3 matrix algebra 
over the ring R. Denote by N the radical of R. Denote by K~(K2) the canonical 
embedding of k(x 1/2) in the first (second) factor of R. A matrix tr belongs to 
Zt iff a has the form 

a o o 

b c o 

d e f 

where a e K1, e,c, f E K2, bEN,  and d e R. 
The center of Z1 can be easily checked to be isomorphic to k(x). Furthermore, 

Z1 is an Artinian hereditary ring. Finally, by straightforward computations 
one verifies that the center of Z1/N~ is isomorphic to k(xl/2). Thus the center 
of fI(Zt/N1,N~) is k(xX/2). 
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If  R is a semi primary ring with radical V such that gl.dimR/V 2 < 00, then R 
is a residue of a semi primary hereditary ring E. We don' t  know if  there exists 
a ring E for which ElM 2 is isomorphic to R/V ~, but there exists a ring Z for which 
the following equalities hold: I(E) = l(R), n(E) = n(R), and the center of 12 is 
isomorphic to the center of R. Furthermore, E admits a splitting, X = F + A + M 2. 

I fR is a semi primary ring with radical V that admits a splitting R = F + A + V 2, 
where F is isomorphic to R/V, and if gl.dimR/V 2 < ov then R is a residue ring 
of the semi primary hereditary ring ~(F, A) [-3]. Let X be a semi primary hereditary 
ring such that R is a residue ring of 12, and Y~/M 2 is isomorphic to R/V 2 where 
M is the radical of E. 12 need not admit a splitting [4], but: 

THEOREM 4. I f  12 admits a splitting 12 = F + A + M 2, then 12 is isomorphic 

to £~(F, A). 

Proof. Since ~ ( F , A ) = F + A + A ® r A + . . . ,  the map obtained by the 
obvious extenstion of the identity on F + A to a map from ~(F, A) to I2 is a well 
defined ring homomorphism, say ~b. Set Mo = A + A ® r A  + "", then ~b(Mo) is an 
ideal in 12 that contains A and is contained in M. Therefore M = ~b(Mo) + M 2, 
and this readily implies that ~b(Mo) = M. Thus ~ is an epimorphism. Since ~b is 
an isomorphism on F + A, it follows that ker ~b is contained in M0 2. But 
gl.dimf~/kerq5 = 1 and ker ~ c M~ imply that kerq~ = 0, thus q~ is an isomor- 

phism. 
If the center of I2 is the field F, then a splitting of E, 12 = F + A + M 2, will 

result if dimFF = 0. We thus have: 

COROLLARY 5. I f  12 is an hereditary semi primary ring with center F, and 
if  dimFF = O, then 12 is isomorphic to f~(F,A) where A is isomorphic to M / M  2. 

Remark that if for every semi primary hereditary ring f~ with radical M1, 
for which F~/M1 is isomorphic to F, and for which F is in the center off~, it follows 
that ~ admits a splitting, ~ = F + A 1 + M~, then necessarily d i m r F  = 0 (e.g., [4]). 

It turns out that every semi primary hereditary ring A is a residue of a semi 
primary hereditary ring f~ that admits a splitting, fl = F + A + M 2. It might be 
of some interest to describe the ideals I in ~ for which gl.dim ~/1 = 1. 

PROPOSITION 6. Let R be a ring satisfying the following conditions: 
(a) R contains a two-sided ideal I, such that r3m Im= (o); 
(b) R/1 is a semi-simple (Artinian) ring. 
(c) 1 • gl.dim R/12 < oo. 

then R is a semi primary ring with radical L 

Proof. Since R/I k+l is a semi-primary ring with radical I/I  ~÷1 such that 
n(i/ik+ 1) = k + 1, then l(R/I k+ l) > k. Observing that l(R/I k+ 1) = l(R/i 2) < oo 

the result follows immediately. 
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