SEMI-PRIMARY HEREDITARY RINGS

BY

A. ZAKS

ABSTRACT

A semi-primary hereditary ring Σ , with radical M and residue ring $\Gamma = \Sigma/M$, is uniquely determined by Γ and a Γ -bimodule $A = M/M^2$, whenever Σ admits a splitting $\Sigma = \Gamma + A + M^2$.

The purpose of this paper is twofold. We first generalize the main theorem of Jans and Nakayama [3] concerning a semi primary ring that admits a splitting, $\Lambda = \Gamma + A + N^2$, and such that gl.dim $\Lambda/N^2 < \infty$. It turns out that the splitting assumption is superfluous. Next we discuss the extent to which Ω is unique, where Ω is a semi primary hereditary ring of which Λ is a residue.

We say that Λ is a semi primary ring, if its (Jacobson) radical N is nilpotent, and the residue ring Γ , $\Gamma = \Lambda/N$, is a semi simple (Artinian) ring.

If e_o, \dots, e_k are k+1 idempotents in Λ , then we say that the sequence (e_o, \dots, e_k) is a connected sequence of length k if $e_i N e_{i+1} \neq 0$ for all $i, i = 0, \dots, (k-1)$.

We denote by $l(\Lambda)$ the supremum of the length of connected sequences, in Λ . If I is any two-sided ideal in Λ such that $I c N^2$ then $l(\Lambda/I) = l(\Lambda)$. Jans and Nakayama have shown in [3] that $gl.\dim \Lambda/N^2 = l(\Lambda)$. If, furthermore, Λ admits a splitting, $\Lambda = \Gamma + A + N^2$, then $gl.\dim \Lambda/I \leq gl.\dim \Lambda/N^2$, and Λ is a residue ring of a semi-primary hereditary ring Ω (i.e. $gl.\dim \Omega \leq 1$).

If $l(\Lambda) < \infty$, Chase has shown in [1] that Λ is triangular, i.e. one can arrange every complete set (e_1, \dots, e_t) of mutually orthogonal idempotents in Λ , $\Lambda = \Lambda e_1 \oplus \dots \oplus \Lambda e_t$, so that $e_i N e_i = 0$ whenever i < j.

Denote by $n(\Lambda)$ the integer satisfying $N^{n(\Lambda)} = 0$ and $N^{n(\Lambda)-1} \neq 0$. Then $n(\Lambda) - 1 \leq l(\Lambda)$ whenever gl.dim $\Lambda/N^2 < \infty$ (e.g. [1], [3]).

If A is any (two-sided) Γ -bimodule, then one constructs the ring $\Omega(\Gamma, A) = \Gamma + A + A \otimes_{\Gamma} A + A \otimes_{\Gamma} A \otimes_{\Gamma} A + \cdots$, this turned out to be very useful in studying semi-primary rings all of whose residue rings have finite global dimension.

Unless otherwise specified let Λ denote a semi primary ring with radical N, such that $gl.\dim \Lambda/N^2 < \infty$. Hence Λ is triangular [1]. An immediate consequence is the existence of a simple projective module. Furthermore, since $e_1Ne_j = 0$ for

Received 11 July, 1968.

 $j = 1, \dots, t$, it follows by straightforward computation that $\Lambda e_1/Ne_1$ is a simple injective module.

THEOREM 1. $gl.dim \Lambda/I \leq gl.dim \Lambda/N^2$ for every two sided ideal, I, such that $I c N^2$.

Proof. A admits a splitting, $\Lambda = \Gamma + N$, and Λ is a residue of the semi primary hereditary ring $\Omega = \Omega(\Gamma, N)$. If K is an ideal in Ω we denote by $K^{(t)}$ the *t*th power of K in Ω . We have $N^{(l(\Lambda)+1)} = 0$. Let J be the inverse image of I in Ω under the canonical projection of Ω -onto Λ , then Ω/J is isomorphic to Λ/I .

It now follows from [3, Prop. 9] that $gl.\dim\Lambda/I \leq l(\Lambda)$. Since $gl.\dim\Lambda/N^2 = l(\Lambda)$ we finally obtain the inequality $gl.\dim\Lambda/I \leq gl.\dim\Lambda/N^2$.

For the rest let Λ be a semi primary ring with radical N of square zero, such that gl.dim $\Lambda = n$. Then if $\Omega = \Omega(\Gamma, N)$ it follows that $N^{(n)} \neq 0$ and $N^{(n+1)} = 0$.

If Σ is any semi primary hereditary ring with radical M, and Σ/M^2 is isomorphic to Λ then $n = l(\Lambda) = l(\Sigma)$, $M^n \neq 0$, and $M^{n+1} = 0$. This follows from the following lemma:

LEMMA 2. If Σ is a semi primary hereditary ring, then $n(\Sigma) = l(\Sigma) + 1$.

COROLLARY 3. Let $\Sigma_1(\Sigma_2)$ be a semi-primary hereditary ring with radical $N_1(N_2)$. If Σ_1/N_1^2 is isomorphic to Σ_2/N_2^2 then $l(\Sigma_1) = l(\Sigma_2)$ and $n(\Sigma_1) = n(\Sigma_2)$.

If 0 and 1 are the unique central idempotents in $\Sigma_1(\Sigma_2)$, then the center of $\Sigma_1(\Sigma_2)$ is a field, say $F_1(F_2)$ (e.g., [4]). The center of Σ_1/N_1^2 is a field, say F, and up to an isomorphism F_1 and F_2 are subfields of F. Furthermore, the semi primary hereditary ring $\Omega(\Sigma_1/N_1, N_1)$ has F as its center. The following example shows that it is possible that F_1 is a proper subfield of F.

EXAMPLE. Let x be a transcendental element over a field k of characteristic 2. Set $R = k(x^{1/2}) \otimes_{k(x)} k(x^{1/2})$. Let Σ , be the subring of the 3×3 matrix algebra over the ring R. Denote by N the radical of R. Denote by $K_1(K_2)$ the canonical embedding of $k(x^{1/2})$ in the first (second) factor of R. A matrix σ belongs to Σ_1 iff σ has the form

where $a \in K_1$, $e, c, f \in K_2$, $b \in N$, and $d \in R$.

The center of Σ_1 can be easily checked to be isomorphic to k(x). Furthermore, Σ_1 is an Artinian hereditary ring. Finally, by straightforward computations one verifies that the center of Σ_1/N_1^2 is isomorphic to $k(x^{1/2})$. Thus the center of $\Omega(\Sigma_1/N_1, N_1)$ is $k(x^{1/2})$.

If R is a semi primary ring with radical V such that $gl.\dim R/V^2 < \infty$, then R is a residue of a semi primary hereditary ring Σ . We don't know if there exists a ring Σ for which Σ/M^2 is isomorphic to R/V^2 , but there exists a ring Σ for which the following equalities hold: $l(\Sigma) = l(R)$, $n(\Sigma) = n(R)$, and the center of Σ is isomorphic to the center of R. Furthermore, Σ admits a splitting, $\Sigma = \Gamma + A + M^2$.

If R is a semi primary ring with radical V that admits a splitting $R = \Gamma + A + V^2$, where Γ is isomorphic to R/V, and if $gl.dim R/V^2 < \infty$ then R is a residue ring of the semi primary hereditary ring $\Omega(\Gamma, A)$ [3]. Let Σ be a semi primary hereditary ring such that R is a residue ring of Σ , and Σ/M^2 is isomorphic to R/V^2 where M is the radical of Σ . Σ need not admit a splitting [4], but:

THEOREM 4. If Σ admits a splitting $\Sigma = \Gamma + A + M^2$, then Σ is isomorphic to $\Omega(\Gamma, A)$.

Proof. Since $\Omega(\Gamma, A) = \Gamma + A + A \otimes_{\Gamma} A + \cdots$, the map obtained by the obvious extension of the identity on $\Gamma + A$ to a map from $\Omega(\Gamma, A)$ to Σ is a well defined ring homomorphism, say ϕ . Set $M_0 = A + A \otimes_{\Gamma} A + \cdots$, then $\phi(M_0)$ is an ideal in Σ that contains A and is contained in M. Therefore $M = \phi(M_0) + M^2$, and this readily implies that $\phi(M_0) = M$. Thus ϕ is an epimorphism. Since ϕ is an isomorphism on $\Gamma + A$, it follows that ker ϕ is contained in M_0^2 . But gl.dim $\Omega/\ker \phi = 1$ and ker $\phi c M_0^2$ imply that ker $\phi = 0$, thus ϕ is an isomorphism.

If the center of Σ is the field F, then a splitting of Σ , $\Sigma = \Gamma + A + M^2$, will result if dim_F $\Gamma = 0$. We thus have:

COROLLARY 5. If Σ is an hereditary semi primary ring with center F, and if $\dim_F \Gamma = 0$, then Σ is isomorphic to $\Omega(\Gamma, A)$ where A is isomorphic to M/M^2 .

Remark that if for every semi primary hereditary ring Ω with radical M_1 , for which Ω/M_1 is isomorphic to Γ , and for which F is in the center of Ω , it follows that Ω admits a splitting, $\Omega = \Gamma + A_1 + M_1^2$, then necessarily dim_F $\Gamma = 0$ (e.g., [4]).

It turns out that every semi primary hereditary ring Λ is a residue of a semi primary hereditary ring Ω that admits a splitting, $\Omega = \Gamma + A + M^2$. It might be of some interest to describe the ideals I in Ω for which gl.dim $\Omega/I = 1$.

PROPOSITION 6. Let R be a ring satisfying the following conditions:

- (a) R contains a two-sided ideal I, such that $\bigcap_m I^m = (o)$;
- (b) R/I is a semi-simple (Artinian) ring.
- (c) $l \cdot gl.dim R/I^2 < \infty$.

then R is a semi primary ring with radical I.

Proof. Since R/I^{k+1} is a semi-primary ring with radical I/I^{k+1} such that $n(I/I^{k+1}) = k + 1$, then $l(R/I^{k+1}) \ge k$. Observing that $l(R/I^{k+1}) = l(R/I^2) < \infty$ the result follows immediately.

References

1. S. U. Chase, A generalization of the ring of triangular matrices, Nagoya Math. J., 18 (1961), 13-25.

2. S. Eilenberg, H. Nagao and T. Nakayama, Dimension of Residue Rings of Hereditary Rings, Nagoya Math. Jour., 10 (1956), 87-95.

3. J. P. Jans and T. Nakayama, Algebras with Finite Dimensional Residue Algebras, Nagoya Math. Jour., 11 (1957), 67-76.

4. A. Zaks, A note on semi primary hereditary rings, Pac. J. Math., 23 (1967), 627-628.

TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA